Part Number Hot Search : 
60601B EN29L MFR4200 M7R76FAJ TP3C105 LS356 2000605 P237T
Product Description
Full Text Search
 

To Download MGA-22003-TR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mga-22003 2.3-2.7 ghz 3x3mm wimax and wifi power amplifi er data sheet description avago technologies mga-22003 linear power amplifi er is designed for mobile and fi xed wireless data applications in the 2.3 to 2.7 ghz frequency range. the pa is optimized for ieee 802.16 wimax/wibro modulation but can be used for any high linearity applications. the pa exhibits fl at gain and good match while providing linear power effi ciency to meet stringent mask conditions. it utilizes avago tech- nologies proprietary gaas enhancement-mode phemt technology for superior performance across voltage and temperature levels. the mga-22003 is packaged in a 3x3x1 mm package for space-constrained applications. applications ? portable wimax/wibro and wifi applications ? wimax/wibro and wifi access points functional block diagram features ? advanced gaas e-phemt ? 50 ? all rf ports ? 9db gain step in low power mode with idsq reduction ? integrated cmos compatible pins for shutdown and low power mode ? 3 to 5v supply ? esd protection all ports above 800v hbm ? small size: 3 x 3 x 1 mm ? stable under all loads or conditions ? -40 ? c to +85 ? c operation ? integrated dc blocking capacitors for input and ouput pins. specifi cations (at 2.5ghz) ? gain of 35db ? pae of 18% at sem compliant pout=25dbm ? meets 802.16 masks at 25 dbm pout, 16qam wimax with 3.3v and 512ma ? 16qam wimax evm < -32db (2.5%) at 25dbm ? low power idd, 80ma at pout=0dbm, 9db gain step device marking instruction gnd 16 rfin 1 vcc1 15 rfout 11 ismn bias network omn gnd 14 vcc2 13 gnd 12 gnd 10 gnd 2 gnd 3 bctrl 4 n/c 9 n/c 8 bsw 6 pmod 7 bsply 5 22003 = product code ka = korea ase yy = year code indicates the year of manufacture ww = workweek code indicates the workweek of manufacture xxxxx = last 5 digit of assembly lot number nc bsp ly bs w pamod nc r f ou t gnd gnd 1 6 gnd v cc2 v cc 1 1 7 gnd gnd gnd gnd bc t r l r fi n 5 1 5 1 3 6 7 8 9 1 0 11 1 2 1 3 1 4 2 4 22003 k a yyww xxxxx 3 mm x 3 mm x 1mm top view
2 electrical specifications absolute minimum and maximum ratings table 1. minimum and maximum ratings parameter specifi cations comments description pin min. typical max. unit supply voltage vcc1 vcc2 3.3 5.5 v bias supply bsply 3.3 4.2 v bias control bctrl 2.8 4.2 v bias on/off bsw 1.8 4.2 v mode control pamode 1.8 4.2 v rf input power rfin 15 dbm using 16qam 3/4 msl msl3 channel temperature 150 c storage temperature -65 150 c esd human body model 800 v man machine model 50 v table 2. operating range parameter specifi cations comments description pin min. typical max. unit supply voltage vcc1 vcc2 3 3.3 5 v bias supply bsply 3 3.3 3.5 v 13 ma bias control bctrl 2.75 2.8 2.85 v .7 ua bias on/off bsw 1.65 1.8 2.2 v 725ua mode control pamode 1.65 1.8 2.2 v 17 25 ua rf output power rfout 25 dbm using 16qam 3/4 frequency range 2.3 2.7 ghz thermal resistance, ? ch-b 23.4 c/w channel to board case temperature -40 +85 c
3 table 3. rf electrical characteristics parameter performance comments min. typical max. unit input return loss -10 db gain flatness 1 db over any 10mhz gain variation (v cc ) -1 1 db 3v to 5v high power mode evm -32 -27 db vcc=3.3v -34 -30 vcc=3.6v sem-a @5.05mhz -30.6 -13 dbm/100khz ibw=100khz sem-b @6.5mhz -22.3 -13 dbm/mhz ibw=1mhz sem-c @10.5mhz -26.6 -19 sem-d @11.5mhz -27.5 -25 sem-e @15.5mhz -35.3 -29.5 sem-f @20.5mhz -42.5 -37 pout (sem compliant) +25 dbm 802.16e total dc current 501 560 ma pout=25dbm 464 pout=24dbm gain 32 35 38 db low power mode evm -30 C db pout=0dbm gain step 8 10 15 db total dc current 70 ma pout=0dbm p1db 31 dbm cw single tone psat 32 dbm cw single tone 2fo -12 -10 dbm/mhz 2.3-2.4ghz -29 -27 2.5-2.7ghz 3fo -35 -27 dbm/mhz settling time 0.2 0.5 us icc leakage current 10 40 ua noise power in cell band -142 dbm/hz noise power in gps band -133 dbm/hz noise power in pcs -137 dbm/hz wimax (802.16e) electrical specifi cations all data measured on an fr4 demo board at vcc1 = vcc2 = 3.3v, tc = 25c, 50 ? at all ports. unless otherwise specifi ed, all data is taken with ofdm 16-qam ? convolutional coding modulated signal per ieee 802.16e with 10mhz bw operat- ing over the bw of 2.3ghz to 2.7ghz.
4 selected performance plots figure 1. evm frequency sweep at 25c and pout=25dbm over vcc figure 2. evm frequency sweep at 25c and pout=26dbm over vcc figure 3. evm frequency sweep at vcc=3.3v and pout=25dbm over tambient figure 4. evm power sweep at vcc=3.3v and 25c over freque ncy figure 5. evm power sweep at vcc=3.3v and -30c over frequency figure 6. evm power sweep at vcc=3.3v and +85c over frequency evm fr e qu e ncy s weep (vcc=3.0 t o 5.0v) ta m b ie nt=25c and p o ut=25db m -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 2300 2400 2500 2600 2700 fr e qu e ncy (mhz) evm (db) 3v0 3v3 3v6 4v2 5v0 evm fr e qu e ncy s weep (vcc=3.0 t o 5.0v) ta m b ie nt=25c and p o ut=26db m -36.00 -34.00 -32.00 -30.00 -28.00 -26.00 -24.00 -22.00 -20.00 2300 2400 2500 2600 2700 fr e qu e ncy (mhz) evm (db) evm fr e qu e ncy s weep (ta m b ie nt=-30c t o +85c) vcc=3.3v and p o ut=25db m -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 2300 2400 2500 2600 2700 fr e qu e ncy (mhz) evm (db) -30c 25c +85c evm p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=25c and vcc=3.3v -44.00 -42.00 -40.00 -38.00 -36.00 -34.00 -32.00 -30.00 -28.00 -26.00 -24.00 -22.00 -20.00 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) evm (db) evm p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=-30c and vcc=3.3v -44.00 -42.00 -40.00 -38.00 -36.00 -34.00 -32.00 -30.00 -28.00 -26.00 -24.00 -22.00 -20.00 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) evm (db) evm p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=+85c and vcc=3.3v -44.00 -42.00 -40.00 -38.00 -36.00 -34.00 -32.00 -30.00 -28.00 -26.00 -24.00 -22.00 -20.00 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) evm (db) 3v0 3v3 3v6 4v2 5v0 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz
5 ga i n fr e qu e ncy s weep (vcc=3.0 t o 5.0v) ta m b ie nt=25c and p o ut=25db m 32 33 34 35 36 37 38 39 40 2300 2400 2500 2600 2700 fr e qu e ncy (mhz) ga i n (db) ga i n fr e qu e ncy s weep (ta m b ie nt=-30c t o +85c) vcc=3.3v and p o ut=25db m 32 33 34 35 36 37 38 39 40 2300 2400 2500 2600 2700 fr e qu e ncy (mhz) ga i n (db) ga i n p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=25c and vcc=3.3v 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) ga i n (db) ga i n p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=-30c and vcc=3.3v 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) ga i n (db) ga i n p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=+85c and vcc=3.3v 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) ga i n (db) 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 2300 2400 2500 2600 2700 fr e qu e ncy (mhz) it o tal (a) 3v0 3v3 3v6 4v2 5v0 -30c 25c +85c 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz 3v0 3v3 3v6 4v2 5v0 t o tal curr e nt fr e qu e ncy s weep (vcc=3.0 t o 5.0v) ta m b ie nt=25c and p o ut=25db m figure 7. gain frequency sweep at 25c and pout=25dbm over vcc f igure 8. gain frequency sweep at vcc=3.3v and pout=25dbm over tam bient figure 9. gain power sweep at vcc=3.3v and 25c over pout figure 10. gain power sweep at vcc=3.3v and -30c over pout figure 11. gain power sweep at vcc=3.3v and -+85c over pout figure 12. total current frequency sweep at 25c and pout=25dbm over vcc
6 figure 13. total current frequency sweep at 3.3v and pout=25dbm over tambient figure 14. total current power sweep at 3.3v and 25c over frequency figure 15. total current power sweep at 3.3v and -30c over frequency figure 16. total current power sweep at 3.3v and +85c over frequency t o tal curr e nt fr e qu e ncy s weep (ta m b ie nt=-30c t o +85c) vcc=3.3v and p o ut=25db m 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 2300 2400 2500 2600 2700 fr e qu e ncy (mhz) it o tal (a) t o tal curr e nt p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=25c and vcc=3.3v 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) it o tal (a) t o tal curr e nt p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=-30c and vcc=3.3v 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) it o tal (a) t o tal curr e nt p owe r s weep (fr e q=2.3 t o 2.7ghz) ta m b ie nt=+85c and vcc=3.3v 0.300 0.340 0.380 0.420 0.460 0.500 0.540 0.580 0.620 20.0 21.0 22.0 23.0 24.0 25.0 26.0 p o ut (db m ) it o tal (a) 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz -30c 25c +85c 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz 2.3ghz 2.4ghz 2.5ghz 2.6ghz 2.7ghz
7 figure 17. sem frequency sweep at vcc=3.3v and 25c (2db post-pa loss assumed) figure 18. sem frequency sweep at vcc=3.6v and 25c (2db post-pa loss assumed) figure 19. sem frequency sweep at vcc=4.2v and 25c (2db post-p a loss assumed) figur e 20.sem at vcc=3.3v, 25c and 2.5ghz over vcc (2db post-pa loss assumed) figure 21. sem at vcc=3.3v, 25c and 2.6ghz over vcc (2db post-pa loss assumed) figure 22. sem at vcc=3.3v, 25c and 2.7ghz over v cc (2db post-pa loss assumed) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) p o ut=25db m , vcc=3.3v and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) p o ut=25db m , vcc=3.6v and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) p o ut=25db m , vcc=4.2v and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) p o ut=25db m , fr e q=2.5ghz and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) s pe c 3v0 3v3 3v6 4v2 5v0 w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) p o ut=25db m , fr e q=2.6ghz and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) p o ut=25db m , fr e q=2.7ghz and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) s pe c 2.5ghz 2.6ghz 2.7ghz s pe c 2.5ghz 2.6ghz 2.7ghz s pe c 2.5ghz 2.6ghz 2.7ghz s pe c 3v0 3v3 3v6 4v2 5v0 s pe c 3v0 3v3 3v6 4v2 5v0
8 figure 23. sem at vcc=3.3v, -30c and 2.5ghz over vcc (2db post-pa loss assumed) figure 24. sem at vcc=3.3v, -30c and 2.6ghz over vcc (2db post-pa loss assumed) figure 25. sem at vcc=3.3v, -30c and 2.7ghz over vcc (2db post-pa loss assumed) figure 26.sem at vcc=3.3v, 25c and 2.5ghz over v cc (2db post-pa loss assumed) figure 27. sem at vcc=3.3v, 25c and 2.6ghz over vcc (2db post-pa loss assumed) figure 28. sem at vcc=3.3v, 25c and 2.7ghz over v cc (2db post-pa loss assumed) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.5ghz and ta m b ie nt=-30c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.6ghz and ta m b ie nt=-30c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.7ghz and ta m b ie nt=-30c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.5ghz and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.6ghz and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.7ghz and ta m b ie nt=25c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) s pe c 25db m 24db m 23db m 22db m 21db m s pe c 25db m 24db m 23db m 22db m 21db m s pe c 25db m 24db m 23db m 22db m 21db m s pe c 25db m 24db m 23db m 22db m 21db m s pe c 25db m 24db m 23db m 22db m 21db m s pe c 25db m 24db m 23db m 22db m 21db m
9 figure 29. sem at vcc=3.3v, +85c and 2.5ghz over vcc (2db post-pa loss assumed) figure 30. sem at vcc=3.3v, +85c and 2.6ghz over vcc (2db post-pa loss assumed) figure 31. sem at vcc=3.3v, +85c and 2.7ghz over vcc (2db post-pa loss assumed) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.5ghz and ta m b ie nt=85c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.6ghz and ta m b ie nt=85c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) w i max s pe ctru m e mi ss io n mask, 802.16 e (16qam 3/4) vcc=3.3v, fr e q=2.7ghz and ta m b ie nt=85c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 fr e q_ o ?s e t (mhz) p o ut (db m /mhz) s pe c 25db m 24db m 23db m 22db m 21db m s pe c 25db m 24db m 23db m 22db m 21db m s pe c 25db m 24db m 23db m 22db m 21db m
10 table 4. evaluation board pin description top pin no. function 1 vcc2 3 b_sply 5 vcc1 7 pamod 9 pamod 11 nc 13 nc 15 b_ctrl 17 nc 19 nc bottom pin no. function 2 vcc2_s 4 gnd 6 gnd 8 gnd 10 gnd 12 gnd 14 b_sw 16 gnd 18 gnd 20 gnd recommended turn on sequence ?? apply vcc1 and vcc2 3.3v ?? apply bsply 3.3v ?? apply bctrl 2.8v ?? apply bsw 1.8v ?? for hpm apply pamod 1.8v for lpm apply pamod 0v ?? apply rf in, not to exceed 15dbm typical test conditions: pin hpm lpm vcc1,2 3.3v 3.3v supply voltage pamod 1.8v 0v low power mode b_sply 3.3v 3.3v bias voltage b_ctrl 2.8v 2.8v bias control b_sw 1.8v 1.8v pa enable notes: vcc1, vcc2 and b_sply can be tied together to reduce supply voltages, but b_ctrl needs to be a regulated voltage which is optimized for 2.8v. evaluation board description demoboard top pins demoboard bottom pins
11 application circuit mga-22003 1 rf in 2 gnd 3 gnd 4 bctrl gnd 12 rf out 11 gnd 10 nc 9 bctrl rf in rf out 100 p f gnd 16 vcc1 15 gnd 14 vcc2 13 5 bsply 6 bsw 7 pamod 8 nc 100 p f bsply bsw pamod vdd1 100 p f vdd2 100 p f 100 p f 0.1uf 100 p f 0.1uf 10uf 47uf 10uf 1 rf in 2 gnd 3 gnd 4 bctrl gnd 12 rf out 11 gnd 10 nc 9 rf out gnd 16 vcc1 15 gnd 14 vcc2 13 5 bsply 6 bsw 7 pamod 8 nc using 3.3v or 5v supply and connecting vcc1, vcc2, bslpy and bctrl notes: bctrl regulates the device current, thus r1 and r2 should have good tolerance rating. if available, a voltage regulator is the preferred method of bias. in this example we set r2 at 10mohm and solve for r1 with simple voltage divider equation. use high resistance values to limit leakage current. vbat vcc1 vcc2 bsply r 1 r 2 bctrl 3.3v example : r 2 v bctrl = *v batt r 1 + r 2 10m ? 2.85v = *3.3v r 1 + 10m ? r 1 = 1.58m ? r 2 = 10m ? given : v bctrl = 2.85v v bat = 3.3v r 2 = 10m r 1 = ? 5.0v example : r 2 v bctrl = *v batt r 1 + r 2 10m ? 2.85v = *5.0v r 1 + 10m ? r 1 = 7.54m ? r 2 = 10m ? given : v bctrl = 2.85v v bat = 5.0v r 2 = 10m r 1 = ?
12 flexible bctrl optimization bctrl voltage on mga-22003 directly controls the bias current of the device. if the user requires lower current or perhaps higher power than the typical operation, then this can be accomplished by a simple bctrl change. a more sophisticated use might include bctrl as part of a closed loop system where software dynamically adjusts bctrl depending on the output power required. low current operation: 400ma at 25dbm pout with bctrl = 1.8v and vcc = 3.3v example 1 is very typical of mobile device application where ~400ma of current consumption is required. with the above settings at full power of 25dbm, idd drops from 500ma to 418ma with some trade-off in evm but still meeting sem. table 5. low current biasing optimal settings for bctrl (2.3g - 2.7g) vcc = bsply = 3.3v pout bctrl idd evm 25dbm 1.8v 418ma -27.9db 24dbm 1.7v 367ma -27.6db 23dbm 1.7v 330ma -27.0db idsq x 94ma x table 6. typical biasing typical settings for bctrl (2.3g - 2.7g) vcc = bsply = 3.3v pout bctrl idd evm 25dbm 2.8v 501ma -32db 24dbm 2.8v 464ma -33db 23dbm 2.8v 435ma -35db idsq x 240ma x hi power operation: 26dbm pout with bctrl = 2v and vcc = 5v example 2 is more typical of cpe applications where cur- rent consumption is less important and higher power is required. with bctrl at 2v and vcc at 5v mga-22003 is able to achieve higher than 26dbm pout and still meet sem. generally as vcc increases sem improves. evm fr e qu e ncy s weep (vcc = 3.0 t o 5.0v) ta m b ie nt = 25c and p o ut = 26db m -36.00 -34.00 -32.00 -30.00 -28.00 -26.00 -24.00 -22.00 -20.00 2300 2400 2500 2600 2700 fr e qu e ncy [mhz] evm [db] 3v3 3v6 4v2 5v0 idd fr e qu e ncy s weep (bctrl = 1.4 t o 2.5v) ta m b ie nt = 25c and p o ut = 25db m and vbat = 3.3 0.300 0.320 0.340 0.360 0.380 0.400 0.420 0.440 0.460 0.480 2300.00 2400.00 2500.00 2600.00 2700.00 fr e qu e ncy [mhz] idd [ m a] 1v4 1v6 1v8 2v0 2v2 2v5
13 land pattern figure 32. recommended footprint figure 33. recommended soldermask opening 3.000.10 1.500.10 t op v iew thr o ugh p ackag e 3.000.10 1.500.10 0.550.10 0.300.10 0.600.10 0.200.10 0.100.10 nc bctrl 9 4 bsply 5 bsw pamod 67 nc 8 rfout 15 rfin gnd gnd 1 3 2 16 gnd vcc2 vcc1 17 14 gnd 13 gnd 12 10 11 gnd gnd 3.000.10 3.000.10 0.300.10 1.500.10 0.150.10 1.500.10 t op v iew thr o ugh p ackag e 0.300.10 0.200.10 0.600.10 nc 9 4 5678 rfout 15 gnd gnd 1 3 2 16 gnd vcc2 vcc1 17 14 gnd 13 gnd 12 10 11 gnd gnd bctrl rfin bsply bsw pamod nc figure 34. package dimensions notes: 1. all units are in millimeters 2. package is symmetrical 3.00 0. 1 0 top view th r ou g h p ac k ag e 3.00 0. 1 0 0.65 0. 1 0 0.40 0. 1 0 1 .60 0. 1 0 0.55 0. 1 0 0. 1 0 0. 1 0 nc bc t r l 9 4 5678 r f ou t 1 5 r fi n gnd gnd 1 3 2 1 6 gnd v cc2 v cc 1 1 7 1 4 gnd 1 3 gnd 1 2 1 0 11 gnd gnd bsp ly bs w pamod nc
14 note 1. all dimensions are in millimeters. 2. dimensions are inclusive of plating. 3. dimensions are exclusive of mold fl ash and metal burr. package dimensions ordering information part number no. of devices container mga-22003-blk 100 antistatic bag MGA-22003-TR1 3000 7" reel mga-22003-tr2 7000 13" reel p in 1 d ot by mar kin g 3.00 0. 1 0 3.00 0. 1 0 22003 kayyww xxxx 0.64 ty p i ca l 1 .00 0. 1 0 t op view s i d e view device orientation us e r fee d d i r e c ti on t op view e nd view us e r fee d d i r e c ti on co ve r t ap e carr ie r t ap e r eel a v ago 22003 yyww xxxx a v ago 22003 yyww xxxx a v ago 22003 yyww xxxx
15 tape and reel information reel dimensions 3.40 0.10 1.70 0.10 3.40 0.10 0.30 0.05 12.00 0.30 5.50 0.05 4.00 0.10 2.00 0.05 1.75 0.10 8.00 0.10 ? 1.50min ? 1.50 +0.10 ?0.00 b a n c w3 w2 w1 ? 13.0 +0.50 ?0.20 120 2.00 10.50 s i z e a b 1.5min. c d 20.2min. n w1 w2 12 mm w3 330 +2.0 ?2.0 13.0 +0.5 ?0.2 100 +3.0 ?0.0 12.4 +3.0 ?0.0 16.4 +2.0 ?2.0 13.65 +1.75 ?0.75 tape dimensions
for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subject to change. copyright ? 2005-2012 avago technologies. all rights reserved. av02-1959en - october 2, 2012 handling and storage typical smt refl ow profi le for maximum temperature = 260+0/-5c profi le feature sn-pb solder pb-free solder average ramp-up rate (tl to tp) 3c/sec max 3c/sec max preheat C temperature min (tsmin) C temperature max (tsmax) C time (mon to max) (ts) 100c 150c 60-120 sec 100c 150c 60-180 sec tsmax to tl C ramp-up rate 3c/sec max time maintained above: C temperature (tl) C time (tl) 183c 60-150 sec 217c 60-150 sec peak temperature (tp) 240 +0/-5c 260 +0/-5c time within 5c of actual peak temperature (tp) 10-30 sec 10-30 sec ramp-down rate 6c/sec max 6c/sec max time 25c to peak temperature 6 min max 8 min max time temperature t p t 25c to peak ts preheat t l t p ts m ax ts mi n t l critical zone t l to t p ramp up ramp down 25


▲Up To Search▲   

 
Price & Availability of MGA-22003-TR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X